4.5 Article

High-Speed Compressed Sensing Reconstruction in Dynamic Parallel MRI Using Augmented Lagrangian and Parallel Processing

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JETCAS.2012.2217032

Keywords

Compressed sensing; magnetic resonance imaging; parallel processing

Ask authors/readers for more resources

Magnetic resonance imaging (MRI) is one of the fields that the compressed sensing theory is well utilized to reduce the scan time significantly leading to faster imaging or higher resolution images. It has been shown that a small fraction of the overall measurements are sufficient to reconstruct images with the combination of compressed sensing and parallel imaging. Various reconstruction algorithms have been proposed for compressed sensing, among which augmented Lagrangian based methods have been shown to often perform better than others for many different applications. In this paper, we propose new augmented Lagrangian based solutions to the compressed sensing reconstruction problem with analysis and synthesis prior formulations. We also propose a computational method which makes use of properties of the sampling pattern and the singular value decomposition of the system transfer function to significantly improve the speed of the reconstruction for the proposed algorithms in Cartesian sampled MRI. The proposed algorithms are shown to outperform earlier methods especially for the case of dynamic MRI for which the transfer function tends to be a very large matrix and significantly ill conditioned. It is also demonstrated that the proposed algorithm can be accelerated much further than other methods in case of a parallel implementation with graphics processing units.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available