4.6 Article

Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

Journal

FRONTIERS IN PHYSIOLOGY
Volume 4, Issue -, Pages -

Publisher

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fphys.2013.00133

Keywords

angiotensin II; hypertrophy; inward remodeling; NADPH oxidase; Nox2; superoxide

Categories

Funding

  1. American Heart Association Heartland Affiliate Post-doctoral Fellowship [0725668Z]
  2. National Institutes of Health [HL-22149, NS-72628, NS-62461]

Ask authors/readers for more resources

Angio ensin II is an important determinant of inward remodeling in cerebral arterioles Many of the vascular effects of angiotensin II are mediated by reactive oxygen species (ROS) generated from homologs of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type (WT) mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day) or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology) and superoxide level (by hydroethidine staining) of cerebral arterioles were determined ex vivo. The pressor, but not the non presser, dose of angiotensin II significantly increased systolic arterial pressure in both WT and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in WT mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of Angll increased cross-sectional area of arteriolar wall in WT mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available