4.5 Review

The essential role of AMPA receptor GluA2 subunit RNA editing in the normal and diseased brain

Journal

FRONTIERS IN MOLECULAR NEUROSCIENCE
Volume 5, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnmol.2012.00034

Keywords

AMPA receptor; GluA2; GluR2; GluR-B; RNA editing; adenosine deaminases acting on RNA; excitotoxicity

Categories

Funding

  1. Office for Science and Medical Research through their spinal fund, SpinalCure Australia
  2. Roth Foundation
  3. Bill Gruy, Patricia A. Quick foundation
  4. Amadeus Energy Ltd.
  5. Gleneagle Securities

Ask authors/readers for more resources

alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AM PA) receptors are comprised of different combinations of GluA1 GluA4 (also known as GluR1 GluR4 and GluR-A to GluR-D) subunits. The GluA2 subunit is subject to RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Gln; Q), present in the GluA2 gene, to a codon for arginine (Arg; R) found in the mRNA. AMPA receptors are calcium (Ca2+)-permeable if they contain the unedited GluA2(Q) subunit or if they lack the GluA2 subunit. While most AMPA receptors in the brain contain the edited GluA2(R) subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable AMPA receptors are important in synaptic plasticity, learning, and disease. Strong evidence supports the notion that Ca2+-permeable AMPA receptors are usually GluA2-lacking AMPA receptors, with little evidence to date for a significant role of unedited GluA2 in normal brain function. However, recent detailed studies suggest that Ca2+-permeable AMPA receptors containing unedited GluA2 do in fact occur in neurons and can contribute to excitotoxic cell loss, even where it was previously thought that there was no unedited GluA2. This review provides an update on the role of GluA2 RNA editing in the healthy and diseased brain and summarizes recent insights into the mechanisms that control this process. We suggest that further studies of the role of unedited GluA2 in normal brain function and disease are warranted, and that GluA2 editing should be considered as a possible contributing factor when Ca2+-permeable AMPA receptors are observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available