4.5 Review

Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential

Journal

FRONTIERS IN MOLECULAR NEUROSCIENCE
Volume 2, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/neuro.02.005.2009

Keywords

genetically-encoded voltage sensors; fluorescent proteins; fluorescence; optical imaging; neurons; patch clamp; neuronal circuit dynamics

Categories

Funding

  1. RIKEN BSI
  2. RIKEN BSI director's fund
  3. NIH - Yale University [NS057631]
  4. JSPS (Japanese Society for the Promotion of Science)-CIHR (Canadian Institutes of Health Research) postdoctoral fellowship program
  5. MEXT (Ministry of Education, Culture, Sports and Technology)

Ask authors/readers for more resources

Over the last decade, optical neuroimaging methods have been enriched by engineered biosensors derived from fluorescent protein (FP) reporters fused to protein detectors that convert physiological signals into changes of intrinsic FP fluorescence. These FP-based indicators are genetically encoded, and hence targetable to specific cell populations within networks of heterologous cell types. Among this class of biosensors, the development of optical probes for membrane potential is both highly desirable and challenging. A suitable FP voltage sensor would indeed be a valuable tool for monitoring the activity of thousands of individual neurons simultaneously in a non-invasive manner. Previous prototypic genetically-encoded FP voltage indicators achieved a proof of principle but also highlighted several difficulties such as poor cell surface targeting and slow kinetics. Recently, we developed a new series of FRET-based Voltage-Sensitive Fluorescent Proteins (VSFPs), referred to as VSFP2s, with efficient targeting to the plasma membrane and high responsiveness to membrane potential signaling in excitable cells. In addition to these FRET-based voltage sensors, we also generated a third series of probes consisting of single FPs with response kinetics suitable for the optical imaging of fast neuronal signals. These newly available genetically-encoded reporters for membrane potential will be instrumental for future experimental approaches directed toward the understanding of neuronal network dynamics and information processing in the brain. Here, we review the development and current status of these novel fluorescent probes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available