4.2 Article

Stress reversal recorded in calcite vein cuttings from the Nankai accretionary prism, southwest Japan

Journal

EARTH PLANETS AND SPACE
Volume 66, Issue -, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1186/s40623-014-0144-4

Keywords

IODP expedition 338; Nankai accretionary prism; Calcite vein; Stress reversal; Paleostress analyses

Funding

  1. Grants-in-Aid for Scientific Research [25800278, 26109004] Funding Source: KAKEN

Ask authors/readers for more resources

The Nankai Trough subduction zone in southwest Japan is a typical convergent margin where the Philippine Sea plate subducts in the northwest direction beneath the Eurasian plate, and devastating earthquakes have repeatedly occurred in this region in the past. In order to investigate the evolution of the stress state in the subduction zone, we analyzed deformation microstructures and the preferred orientation of calcite grains in two cuttings of calcite veins from Hole C0002F that was drilled through the inner wedge of the Nankai accretionary prism during the Integrated Ocean Discovery Program (IODP) Expedition 338 in 2012. For both samples collected at depths of 1,085.5 and 1,885.5 meters below the sea floor (mbsf), the c-axes of calcite grains are preferentially oriented perpendicular to the vein wall, which is indicative of competitive growth of calcite during the vein opening caused by a vein normal extension. Also, mechanical e-twins were developed in both samples, and these are inferred to have been developed under the same stress field as that responsible for the formation of calcite veins based on the paleostress analyses in grains with e-twins. For the calcite vein retrieved at the depth of 1,885.5 mbsf, kink bands were also developed by the compression in the direction perpendicular to the vein wall, which is indicative of stress reversal after the formation of mechanical e-twins. Although we could not reach a definite conclusion for the cause of the stress reversal, it could have occurred during either fold development or seismic cycles in the Nankai accretionary prism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available