4.6 Article

Synergistic Degradation of Dye Wastewaters Using Binary or Ternary Oxide Systems with Immobilized Laccase

Journal

CATALYSTS
Volume 8, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/catal8090402

Keywords

oxide materials; hybrid supports; dyes; enzyme immobilization; laccase; environmental protection

Funding

  1. Poznan University of Technology [03/32/DSPB/0806]

Ask authors/readers for more resources

In recent years, groundwater contamination caused by dyes has become an important problem. They enter into wastewater as a result of the textile, automotive, or cosmetics industries. For this reason, new methods are being sought, which would aid at the removal of dye impurities with high efficiency and also would be relatively cheap. In the presented study synthesized TiO2-ZrO2 (with TiO2:ZrO2 molar ratio of 8:2) and TiO2-ZrO2-SiO2 (with TiO2:ZrO2:SiO2 molar ratio of 8:1:1) oxide materials were used as supports for enzyme immobilization. Effective synthesis of the carriers was confirmed by results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), low-temperature nitrogen sorption and Fourier transform infrared spectroscopy (FTIR). The materials achieve high immobilization efficiency of the laccases from Trametes versicolor (83% and 96% for TiO2-ZrO2-laccase and TiO2-ZrO2-SiO2-laccase, respectively). The effect of selected dye concentrations, pH, temperature, and reusability were also tested. The obtained results showed that after removal of textile dyes, such as Alizarin Red S (ARS), Remazol Brilliant Blue R (RBBR), and Reactive Black 5 (RB5), under optimal process conditions, which were pH 5 and 25 degrees C, from dye solution of 5 mg/L degradation efficiency reached 100%, 91%, and 77%, respectively, suggesting synergistic mechanism of degradation by simultaneous sorption and catalytic action. Finally, reduction of chemical oxygen demand (COD) of the solution after treatment indicated lower mixture toxicity and effective dye degradation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available