4.6 Review

PD-1 as a potential target in cancer therapy

Journal

CANCER MEDICINE
Volume 2, Issue 5, Pages 662-673

Publisher

WILEY
DOI: 10.1002/cam4.106

Keywords

Cancer; immune tolerance; immunotherapy; nivolumab; programmed cell death-1 receptor; programmed cell death-1-ligand 1

Categories

Funding

  1. DF/HCC Kidney Cancer SPORE [P50 CA101942-01]
  2. Bristol-Myers Squibb

Ask authors/readers for more resources

Recently, an improved understanding of the molecular mechanisms governing the host response to tumors has led to the identification of checkpoint signaling pathways involved in limiting the anticancer immune response. One of the most critical checkpoint pathways responsible for mediating tumor-induced immune suppression is the programmed death-1 (PD-1) pathway, normally involved in promoting tolerance and preventing tissue damage in settings of chronic inflammation. Many human solid tumors express PD ligand 1 (PD-L1), and this is often associated with a worse prognosis. Tumor-infiltrating lymphocytes from patients with cancer typically express PD-1 and have impaired antitumor functionality. Proof-of-concept has come from several preclinical studies in which blockade of PD-1 or PD-L1 enhanced T-cell function and tumor cell lysis. Three monoclonal antibodies against PD-1, and one against PD-L1, have reported phase 1 data. All four agents have shown encouraging preliminary activity, and those that have been evaluated in larger patient populations appear to have encouraging safety profiles. Additional data are eagerly awaited. This review summarizes emerging clinical data and potential of PD-1 pathway-targeted antibodies in development. If subsequent investigations confirm the initial results, it is conceivable that agents blocking the PD-1/PD-L1 pathway will prove valuable additions to the growing armamentarium of targeted immunotherapeutic agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available