4.5 Article

Polymer Brush Gradients by Adjusting the Functional Density Through Temperature Gradient

Journal

ADVANCED MATERIALS INTERFACES
Volume 1, Issue 2, Pages -

Publisher

WILEY
DOI: 10.1002/admi.201300056

Keywords

-

Funding

  1. FWO of Belgium
  2. BOF of University of Ghent

Ask authors/readers for more resources

The group of silanes is one of the most abundant classes of molecules used for surface modification. In most studies, silanization is made from the vapor phase or solution. Here, an easy, robust, and fast way not only to modify, but also to map, control, and predict the wetting profiles on silicon surfaces after silanization and the final characteristics of a brush layer polymerized from this silane template profile are presented. The initiator molecule, 2-bromo-2-methyl-N-3-(triethoxysilyl) propyl propanamide (BTPAm), is spin-casted on a silicon substrate and a thermal gradient is applied using a combinatorial approach for studying the influence of temperature on the spin-casted silanes. Subsequently, polyacrylamide (PAAm) brushes are grown from the initiating end group of the BTPAm molecules through atom transfer radical polymerization (ATRP). Simulations of the heat distribution inside the silicon wafer allow both confirming the mapping of surface properties and designing desired profiles by predicting thermal distributions. An analytical expression for quantification is also provided. Thus, the wetting properties, surface roughness, and morphology of the brush layer after polymerization are mapped and correlated with the initial BTPAm gradient profile. The studies presented are envisioned to be of interest for designing surface profiles with different wetting properties, facilitating polymer brush growth, and to be used as predictive tools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available