4.5 Article

Field and remotely sensed measures of soil and vegetation carbon and nitrogen across an urbanization gradient in the Boston metropolitan area

Journal

URBAN ECOSYSTEMS
Volume 16, Issue 3, Pages 593-616

Publisher

SPRINGER
DOI: 10.1007/s11252-013-0291-6

Keywords

-

Funding

  1. Direct For Biological Sciences
  2. Division Of Environmental Biology [1237491] Funding Source: National Science Foundation
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [0948857] Funding Source: National Science Foundation

Ask authors/readers for more resources

Understanding the impact of urbanization on terrestrial biogeochemistry is critical for addressing society's grand challenge of global environmental change. We used field observations and remotely sensed data to quantify the effects of urbanization on vegetation and soils across a 100-km urbanization gradient extending from Boston to Harvard Forest and Worcester, MA. At the field-plot scale, the normalized difference vegetation index (NDVI) was positively correlated with aboveground biomass (AGB) and foliar nitrogen (N) content and negatively correlated with impervious surface fraction. Unlike previous studies, we found no significant relationship between NDVI or impervious surface area (ISA) fraction and foliar N concentration. Patterns in foliar N appeared to be driven more strongly by changes in species composition rather than phenotypic plasticity across the urbanization gradient. For forest and non-residential development, soil nitrogen content increased with urban intensity. In contrast, residential land had consistently high soil N content across the gradient of urbanization. When field observations were scaled-up to the Boston Metropolitan Statistical Area (MSA), we found that soil and vegetation N content were negatively correlated with ISA fraction, an indicator of urban intensity. Our results demonstrated the importance of accounting for the influence of impervious surfaces when scaling field data across urban ecosystems. The combination of field data with remote sensing holds promise for disentangling the complex interactions that drive biogeochemical cycling in urbanizing landscapes. Empirical data that accurately characterize variations in urban biogeochemistry are critical to gain a mechanistic understanding of urban ecosystem function and to guide policy makers and planners in developing ecologically sensitive development strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available