4.7 Article

Dispersion and distribution of bimetallic oxides in SBA-15, and their enhanced activity for reverse water gas shift reaction

Journal

INORGANIC CHEMISTRY FRONTIERS
Volume 2, Issue 8, Pages 741-748

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5qi00062a

Keywords

-

Ask authors/readers for more resources

We used the direct hydrothermal synthesis method to obtain various well-dispersed bimetallic oxides/SBA-15 for the first time. It is possible that well-dispersed relatively large bimetallic sulfates are formed during the hydrothermal synthesis process and then re-dispersed with difficulty during the heat treatment process resulting in the formation of well-dispersed oxide particles in SBA-15. TEM elemental maps of CuO-NiO/SBA-15 clearly illustrated that CuO and NiO particles were monodispersed in SBA-15. TEM-EDX line analysis revealed that NiO particles were well distributed on the SBA-15 surface, and then covered by CuO particles. TEM elemental maps of CuO-CeO2/SBA-15 clearly showed that CuO and CeO2 particles aggregated slightly in SBA-15. TEM-EDX line analysis showed that CeO2 particles were well distributed on the SBA-15 surface, and then covered by CuO particles. TEM elemental maps of NiO-CeO2/SBA-15 clearly illustrated that NiO and CeO2 particles aggregated slightly in SBA-15. TEM-EDX line analysis revealed that NiO particles were largely mixed with CeO2 on the SBA-15 surface. Therefore, TEM elemental maps can be used to study the dispersion of bimetallic oxides, and TEM-EDX line analysis is very effective for investigating their distribution in SBA-15. Compared with monometallic oxides/SBA-15, the obtained bimetallic oxides/SBA-15 catalysts exhibited excellent efficiency as regards reducing CO2 to CO by the reverse water-gas shift (RWGS) reaction. In particular, the bimetallic oxides/SBA-15 catalysts could result in the high CO2 conversion to CO at low temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available