4.7 Article

High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JESTPE.2014.2339279

Keywords

Battery charging; contactless power transfer; electric vehicle (EV); zero-voltage switching (ZVS)

Ask authors/readers for more resources

In this paper, a contactless charging system for an electric vehicle (EV) battery is proposed. The system consists of three parts: 1) a high-frequency power supply from a full-bridge inverter with frequency modulation; 2) a loosely coupled transformer that utilizes series resonant capacitors for both the primary and secondary windings; and 3) a rectification output circuit that uses a full-bridge diode rectifier. With carefully selected compensation network parameters, zero-voltage switching can be ensured for all the primary switches within the full range of an EV battery charging procedure, which allows the use of low ON-state resistance power MOSFETs to achieve high-frequency operation and system efficiency. The design of loosely coupled transformer is simulated and verified by finite element analysis software. For a 4-kW hardware prototype, the peak dc-dc efficiency reaches 98% and 96.6% under 4- and 8-cm air gap conditions, respectively. The prototype was tested with an electronic load and a home-modified EV to verify the performance of constant current and constant voltage control and their transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available