4.6 Article

Short-Term Electric Load Forecasting Using Echo State Networks and PCA Decomposition

Journal

IEEE ACCESS
Volume 3, Issue -, Pages 1931-1943

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2015.2485943

Keywords

Time-series; forecasting; electric load prediction; echo state network; genetic algorithm; PCA; dimensionality reduction; smart grid

Ask authors/readers for more resources

In this paper, we approach the problem of forecasting a time series (TS) of an electrical load measured on the Azienda Comunale Energia e Ambiente (ACEA) power grid, the company managing the electricity distribution in Rome, Italy, with an echo state network (ESN) considering two different leading times of 10 min and 1 day. We use a standard approach for predicting the load in the next 10 min, while, for a forecast horizon of one day, we represent the data with a high-dimensional multi-variate TS, where the number of variables is equivalent to the quantity of measurements registered in a day. Through the orthogonal transformation returned by PCA decomposition, we reduce the dimensionality of the TS to a lower number k of distinct variables; this allows us to cast the original prediction problem in k different one-step ahead predictions. The overall forecast can be effectively managed by k distinct prediction models, whose outputs are combined together to obtain the final result. We employ a genetic algorithm for tuning the parameters of the ESN and compare its prediction accuracy with a standard autoregressive integrated moving average model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available