4.2 Article

Nuclear size, nuclear pore number and cell cycle

Journal

NUCLEUS
Volume 2, Issue 2, Pages 113-118

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/nucl.2.2.15446

Keywords

nuclear size; nuclear pore complex (NPC); cyclin-dependent protein kinases (Cdks); bio-imaging; cell-fusion

Categories

Ask authors/readers for more resources

In eukaryotic cells, the nucleus is a complex and sophisticated organelle containing genomic DNA and supports essential cellular activities. Its surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It has been observed that the nuclear volume and the number of NPCs almost doubles during interphase in dividing cells, but the coordination of these events with the cell cycle was poorly understood, particularly in mammalian cells. Recently, we demonstrated that cyclin-dependent protein kinases (Cdks) control interphase NPC formation in dividing human cells. Cdks drive the very early step of NPC formation because Cdk inhibition suppressed the generation of nascent pores, which are considered to be immature NPCs, and disturbed expression and localization of some nucleoporins. Cdk inhibition did not affect nuclear volume, suggesting that these two processes have distinct regulatory mechanisms in the cell cycle. The details of our experimental systems and finding are discussed in more depth. With new findings recently reported, we also discuss possible molecular mechanisms of interphase NPC formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available