3.8 Review

Potential applications of magnetic particles to detect and treat Alzheimer's disease

Journal

NANOSCALE RESEARCH LETTERS
Volume 9, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/1556-276X-9-538

Keywords

Superparamagnetic iron oxide nanoparticles; Gadolinium; Magnetic resonance imaging; Amyloid; Bio-barcode assay

Funding

  1. Spanish Ministerio de Economia y Competitividad (MINECO) [MAT2012-36270-C04-03]

Ask authors/readers for more resources

Nanotechnology is an exciting and promising scientific discipline. At the nanoscale, a material displays novel physical properties that offer many new and beneficial products and applications. In particular, magnetic nanoparticles - a core/shell nanoparticle - present considerable diagnostic and therapeutic potentials, and superparamagnetic iron oxide nanoparticles (SPIONs) are considered promising theranostic tools. Alzheimer's disease (AD) is a neurodegenerative disorder that predominantly affects people over 65 years of age. The disease is characterized by the presence of extracellular plaques in the brain which are formed by interwoven fibrils composed of variants of the beta-amyloid peptide. Medication can temporarily retard worsening of symptoms, but only in the first stages of the disease; early detection is thus of crucial importance. This minireview covers the progress made in research on the use of magnetic nanoparticles for ex vivo and/or in vivo detection and diagnosis of AD by means of magnetic resonance imaging (MRI), or to label peptides and fibrils. Of particular importance is the use of these nanoparticles to detect AD biomarkers in biological fluids. A description is given of the bio-barcode amplification assay using functionalized magnetic particles, as well as the use of such nanoparticles as a system for inhibiting or delaying the assembly of peptide monomers into oligomers and fibrils. Lastly, a brief overview is given of possible future lines of research in this.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available