3.8 Article

Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol

Journal

NANOSCALE RESEARCH LETTERS
Volume 8, Issue -, Pages -

Publisher

SPRINGER
DOI: 10.1186/1556-276X-8-70

Keywords

Gold nanoparticles; Extracellular biosynthesis; Green catalysis; Escherichia coli; Nitrophenol degradation; Water treatment

Funding

  1. Special Coordination Fund for Promoting Science and Technology, Creation of Innovative Centers for Advanced Interdisciplinary Research Areas (Innovative BioProduction Kobe) from the Ministry of Education, Culture, Sports and Technology (MEXT)
  2. MEXT Scholarship research fund

Ask authors/readers for more resources

Room-temperature extracellular biosynthesis of gold nanoparticles (Au NPs) was achieved using Escherichia coli K12 cells without the addition of growth media, pH adjustments or inclusion of electron donors/stabilizing agents. The resulting nanoparticles were analysed by ultraviolet-visible (UV-vis) spectrophotometry, atomic force microscopy, transmission electron microscopy and X-ray diffraction. Highly dispersed gold nanoplates were achieved in the order of around 50 nm. Further, the underlying mechanism was found to be controlled by certain extracellular membrane-bound proteins, which was confirmed by Fourier transformation-infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis. We observed that certain membrane-bound peptides are responsible for reduction and subsequent stabilization of Au NPs (confirmed by zeta potential analysis). Upon de-activation of these proteins, no nanoparticle formation was observed. Also, we prepared a novel biocatalyst with Au NPs attached to the membrane-bound fraction of E. coli K12 cells serving as an efficient heterogeneous catalyst in complete reduction of 4-nitrophenol in the presence of NaBH4 which was studied with UV-vis spectroscopy. This is the first report on bacterial membrane-Au NP nanobiocomposite serving as an efficient heterogeneous catalyst in complete reduction of nitroaromatic pollutant in water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available