4.7 Article

A novel microfluidic wound model for testing antimicrobial agents against Staphylococcus pseudintermedius biofilms

Journal

JOURNAL OF NANOBIOTECHNOLOGY
Volume 12, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1477-3155-12-1

Keywords

Microfluidics; Biofilms; Staphylococcus pseudintermedius; Wound model; Antibiofilm

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Institutes for Health Research
  3. Canada Foundation for Innovation

Ask authors/readers for more resources

Background: Current methods for testing treatments for veterinary surgical site infections can successfully emulate elements of a chronic wound, but these are time consuming and costly, requiring specialized laboratory equipment and considerable space to house study animals. Microfluidic devices however, can be coated with collagen and maintained at basal body temperature, providing a more cost-effective and space-saving model of a chronic wound. Our study assesses the applicability of a new microfluidic model by testing the activity of DispersinB against biofilms of methicillin-resistant Staphylococcus pseudintermedius (MRSP); DispersinB has been shown to prevent biofilm growth of Staphylococcus epidermidis, another prominent wound colonizer. Results: We successfully developed a microfluidic model to examine the effects of antimicrobial therapy on biofilms formed by organisms associated with wound infections in companion animals (e. g. MRSP). Although, we were unable to recapitulate previous findings that DispersinB-Gentamycin is highly effective against Staphylococcal biofilms using this model, we were able to confirm its effect in a microtitre plate. Differences in the experimental conditions likely account for this result (e.g. strains tested, flow conditions, treatment time, etc.). In the microtitre plate assay, DispersinB inhibited biofilm growth after a 24 hour period; there was an inverse relationship between the concentration of DispersinB-Gentamycin and the amount of biofilm remaining following treatment. Collagen-coated microtitre plates showed a similar result, but this did not correlate as well; collagen, the most abundant protein in the body may help to retain the biomass of treated biofilms. Conclusions: Our model may be useful in examining the effect of treatment on wound infections, although we acknowledge that in this model the test organisms may be more recalcitrant to antimicrobials than in other published systems. We contend that this may in fact better represent the conditions in vivo, where organisms associated with chronic wound infections are highly resistant to antimicrobials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available