4.6 Article

A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 2, Issue 9, Pages 1650-1657

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tc32011a

Keywords

-

Funding

  1. MINDEF Singapore
  2. Army Research Laboratory (ARL), USA

Ask authors/readers for more resources

The growth of hexagonal boron nitride (h-BN) is of much interest owing to its outstanding properties and for scalable two dimensional (2D) electronics applications. Here, we report the controllable growth of h-BN on a copper substrate using the atmospheric pressure chemical vapor deposition (APCVD) method using ammonia borane as the precursor. The advantages of using APCVD include its ease of setup utilizing fewer resources, low cost and fast growth, all of which are essential for full film coverage and the mass production of 2D h-BN. In this study, we observed a substrate-position dependent evolution of h-BN domains at various stages of growth as the density and size of the domains increased downstream along the quartz tube. Other critical parameters such as growth temperature, deposition time, temperature and mass of precursor were also systemically investigated in order to understand the factors influencing the growth of the h-BN film. Importantly, with a slight increase in the growth temperature of 50 degrees C, we observe a significant (similar to 17-fold) increase in the average domain size, and its further expansion for a longer duration of growth. Likewise, our parametric study highlights the impact of other crucial parameters on domain size, coverage, and thickness of the h-BN film.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available