4.6 Article

Synthesis and characterization of novel TiO2-poly(propylene fumarate) nanocomposites for bone cementation

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 2, Issue 32, Pages 5145-5156

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tb00715h

Keywords

-

Funding

  1. OGIRC
  2. Canadian Foundation for Innovation (CFI)

Ask authors/readers for more resources

This work reports on a new methodology for synthesizing poly(propylene fumarate) (PPF)/titania nanowire composites which would be beneficial in tissue engineering for orthopaedic bone cements. The synthetic procedure reacted PPF with maleic anhydride to create HOOC-PPF-COOH species in a ring-opening reaction at room temperature. These species were then coordinated to titania nanowires by metal carboxylate bonding through the end -COOH groups. These PPF-grafted nano-TiO2 assemblies were then further polymerized and crosslinked in the presence of N-vinylpyrrolidone to produce the bone cements. The synthesis and modification of PPF was confirmed by NMR (H-1 and C-13) and XPS, while the reaction chemistry of the functionalized PPF and nano-TiO2 was also investigated by XPS and FTIR. Mechanical testing of the resulting composites demonstrated a significant reinforcement of the tensile and flexural properties, showing the utility of this synthetic approach for bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available