4.6 Article

The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 2, Issue 17, Pages 2517-2529

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tb21453b

Keywords

-

Funding

  1. Department of Biomedical Engineering at Case Western Reserve University
  2. NIH Neuroengineering Training Grant [5T32EB004314-14]
  3. Rehabilitation Research and Development, Department of Veterans Affairs Merit Review [B7122R]
  4. Presidential Early Career Award for Scientists and Engineers (PECASE)

Ask authors/readers for more resources

A major limitation to the use of microelectrode technologies in both research and clinical applications is our inability to consistently record high quality neural signals. There is increasing evidence that recording instability is linked, in part, to neuroinflammation. A number of factors, including extravasated blood products and macrophage released soluble factors, are believed to mediate neuroinflammation and the resulting recording instability. However, the roles of other inflammatory stimuli, such as residual endotoxin contamination, are poorly understood. Therefore, to determine the effect of endotoxin contamination we examined the brain tissue response of C57/BL6 mice to non-functional microelectrodes with a range of endotoxin levels. Endotoxin contamination on the sterilized microelectrodes was measured using a limulus amebocyte lysate test following FDA guidelines. Microelectrodes sterilized by autoclave, dry heat, or ethylene oxide gas, resulted in variable levels of residual endotoxins of 0.55 EU per mL, 0.22 EU per mL, and 0.11 EU per mL, respectively. Histological evaluation at 2 weeks showed a direct correlation between microglia/macrophage activation and endotoxin levels. Interestingly, astrogliosis, neuronal loss, and blood-brain barrier dysfunction demonstrated a threshold-dependent response to bacterial endotoxins. However, at 16 weeks, no histological differences were detected, regardless of initial endotoxin levels. Therefore, our results demonstrate that endotoxin contamination, within the range examined, contributes to initial but not chronic microelectrode-associated neuroinflammation. Our results suggest that minimizing residual endotoxins may impact early recording quality. To this end, endotoxins should be considered as a potent stimulant to the neuroinflammatory response to implanted intracortical microelectrodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available