4.6 Article

Luminescent S-doped carbon dots: an emergent architecture for multimodal applications

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 1, Issue 18, Pages 2375-2382

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tb00583f

Keywords

-

Funding

  1. DBT
  2. ICAR-NAIP
  3. ICAR-National Fund
  4. ISI plan project
  5. CSIR (New Delhi)

Ask authors/readers for more resources

A facile route has been developed to synthesise and isolate sulphur doped fluorescent carbon dots for the first time. Such carbogenic quantum dots exhibit a wide band gap of 4.43 eV with a high open circuit voltage (V-OC) of 617 mV along with a fill factor (FF) as high as 37%, using phenyl-C60-butyric acid methyl ester (PCBM) as the electron transporting layer. Besides the wide band gap, which is useful in the fabrication of solar cells, sulphur modified carbon dots also exhibit a high fluorescence quantum yield of 11.8% without any additional surface passivation, producing a unique fluorescent probe for further applications. In addition, the particles have a strong tendency to interact with the surface of gold nanoparticles and produce a thin fluorescent layer over their surfaces. Moreover, as they are completely biocompatible in nature, the highly fluorescent S-doped carbon dots have a strong potential for use in bioimaging applications. Interestingly, owing to the presence of oxygen and sulphur functionality, the highly negatively charged particles can easily bind with positively charged DNA-PEI complexes, simply by mixing them, and after interaction with DNA, bright blue fluorescence has been observed under an excitation wavelength of 405 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available