4.6 Article

Zinc oxide-multiwalled carbon nanotubes hybrid nanocomposite based urea biosensor

Journal

JOURNAL OF MATERIALS CHEMISTRY B
Volume 1, Issue 46, Pages 6392-6401

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3tb20935k

Keywords

-

Funding

  1. Department of Science and Technology (DST), Govt. of India
  2. UGC

Ask authors/readers for more resources

An efficient matrix comprising a hybrid nanocomposite of zinc oxide (ZnO) and multiwalled carbon nanotubes (MWCNTs) has been synthesised on indium tin oxide coated glass slides (ITO/Glass) using a chemical route deposition technique for the realization of an efficient urea biosensor. Urease (Urs) was used as the specific enzyme for urea detection and was physically immobilized over the surface of the hybrid nanocomposite matrix based (ZnO-MWCNT/ITO) electrode. The fabricated Urs/ZnO-MWCNT/ITO bioelectrode was characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) techniques. The nanocomposite based bioelectrode i.e. Urs/ZnO-MWCNT/ITO exhibits enhanced biosensing response characteristics as compared to that of the bare ZnO based (Urs/ZnO/ITO) bioelectrode. The prepared bioelectrode (Urs/ZnO-MWCNT/ITO) exhibits a very high sensitivity of about 43.02 mu A mM(-1) cm(-2) and a long shelf-life of more than 4 months (>16 weeks). The low Michaelis-Menten parameter (K-m) value, only 0.85 mM, indicates high affinity of the immobilized urease on the surface of hybrid nanocomposite matrix towards its analyte (urea). The obtained results in the present study are encouraging and will pave the way towards the realization of an efficient urea biosensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available