4.6 Article

Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 41, Pages 20356-20364

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta07364c

Keywords

-

Funding

  1. National Natural Science Foundation of China [51672092, U1732117]
  2. China Postdoctoral Science Foundation [2018M632847]
  3. Wuhan Morning Light Plan of Youth Science and Technology [2017050304010299]
  4. ARC [FT140100698]

Ask authors/readers for more resources

Nanocomposites combining high aspect ratio nanowire fillers and a high breakdown strength polymer matrix have been actively studied for pulsed power capacitor applications. The relationship between the aspect ratio of nanowires and the dielectric constant of the composites, however, has not yet been established due to the lack of dielectric theory study, which impedes the research progress on nanowire/polymer composites for energy storage applications. In this work, a modified dielectric model based on Maxwell-Garnett approximation has been developed to quantitatively investigate the relationship between the aspect ratio of nanowires and the dielectric constant of the composites. Selecting SrTiO3 nanowires as the fillers, SrTiO3/P(VDF-CTFE) nanocomposite films were prepared using SrTiO3 nanowires with an optimized aspect ratio (similar to 100) by a high-speed stirring hydrothermal process. The experimental results confirm that the nanowires with the optimized aspect ratio enhance the dielectric constant and breakdown strength of the composite, thus greatly improving the energy storage performance. This work provides a universal computational approach for understanding the effect of the aspect ratio of 1D nanofillers on the composite properties, being beneficial to nanocomposite design for energy storage applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available