4.6 Article

Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 24, Pages 9040-9047

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta00119b

Keywords

-

Funding

  1. National Natural Science Foundation of China [21236003, 21206042, 20925621, 21176083]
  2. Basic Research Program of Shanghai [13NM1400700, 13NM1400701]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Non-noble metal copper (Cu) nanoparticles (NPs) with controlled size and surface coverage are decorated on silicon nanowire arrays (SiNWAs) by a simple galvanic displacement reaction. Using the combined efforts of all these approaches, SiNWAs-supported Cu NPs (SiNWAs-Cu) exhibit excellent and stable activity for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) in an aqueous solution, which can be recycled for five successive cycles of the reaction with a conversion efficiency of more than 95%. This novel catalyst also shows excellent catalytic performance for the degradation of other organic dyes, such as methylene blue (MB) and rhodamine B (RhB). Additionally, we demonstrate that the catalytic activity of SiNWAs-Cu is comparable to other SiNWAs-supported noble metal NPs (i.e., Ag and Au). Furthermore, SiNWAs as powerful substrates can be reused for decorating with Cu NPs after dilute HNO3 treatment. SiNWAs-Cu is particularly attractive as a catalyst, although Cu is orders of magnitude cheaper than any noble metals, its catalytic performance is comparable to other noble metals. So SiNWAs-Cu is thus expected to have the potential as a highly efficient, cost-effective and eco-friendly reusable catalyst to replace noble metals for certain catalytic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available