4.6 Article

NiCo2O4-based materials for electrochemical supercapacitors

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 36, Pages 14759-14772

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta02390k

Keywords

-

Funding

  1. National Natural Science Foundation of China [51134007, 21003161, 21250110060]
  2. Distinguished Young Scientists of Hunan Province [13JJ1004]
  3. Program for the New Century Excellent Talents in University [NCET-11-0513]
  4. Hunan Nonferrous Funding
  5. Hunan Provincial Innovation Foundation for Postgraduate [CX2013B048]

Ask authors/readers for more resources

Nickel cobaltite (NiCo2O4), with excellent electrochemical performance, has become a new class of energy storage material for electrochemical supercapacitors, which facilitates to relieve the pressure of energy crisis and environmental pollution. It possesses richer electroactive sites and at least two magnitudes higher electrical conductivity than that of NiO and Co3O4, which exhibit not only large power density, but also high energy density of up to 35 W h kg(-1). Furthermore, it shows comparable capacitive performances with noble metal oxides of RuO2, but with much lower cost and more abundant resources. This feature article briefly analyses the energy storage mechanism of NiCo2O4, summarizes the methodologies and nanostructures discovered in recent years, and points out the potential problems and future prospects of utilizing NiCo2O4-based materials as supercapacitor electrodes. Moreover, composite electrodes based on nickel cobaltite are also elaborated with considerable interest. Since the pioneering work of Hu and his group in 2010, numerous research studies have also demonstrated NiCo2O4 electrodes to show remarkable supercapacitive performances; however, more specialized work should be performed to further develop the potential of this novel electrode material so as to realize their massive commercial applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available