4.6 Article

Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 14, Pages 4919-4926

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta00582a

Keywords

-

Funding

  1. National Natural Science Foundation of China [51362018, 21163010]
  2. Chinese Ministry of Education [212183]
  3. Natural Science Funds for Distinguished Young Scholars of Gansu Province [1111RJDA012]

Ask authors/readers for more resources

Binary metal oxides have recently attracted extensive attention from researchers in the energy storage field due to their multiple oxidation states and high energy density. In the present work, Ni3V2O8, Co3V2O8, and the Ni3V2O8/Co3V2O8 nanocomposite are designed and synthesized as a new class of high performance electrode material for supercapacitors. Ni3V2O8 and Co3V2O8 show a structure comprising nanoflakes and nanoparticles, respectively. The Ni3V2O8/Co3V2O8 nanocomposite is prepared by growing Co3V2O8 nanoparticles on the surface of Ni3V2O8 nanoflakes. The composite inherits the structural characteristics and combines the pseudocapacitive benefits of both Ni3V2O8 and Co3V2O8, showing higher specific capacitance than Co3V2O8 and superior rate capability as well as better cycle stability to Ni3V2O8. The dependence of pseudocapacitive properties of the Ni3V2O8/Co3V2O8 nanocomposite on the Ni/Co mass ratio is also investigated, indicating that the high specific capacitance of the composite is contributed by Ni3V2O8, while its excellent rate capability and cycle stability can be attributed to the Co3V2O8 component.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available