4.6 Article

The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 47, Pages 20271-20279

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta03591g

Keywords

-

Funding

  1. National Basic Research Program of China (973 program) [2011CB935903]
  2. National Natural Science Foundation of China [21233004, 21021002]

Ask authors/readers for more resources

The cubic garnet-type solid electrolyte Li7La3Zr2O12 with aliovalent doping exhibits a high ionic conductivity. However, the synergistic effects of aliovalent co-doping on the ionic conductivity of garnet-type electrolytes have rarely been examined. In this work, the synergistic effects of co-dopants Al and Te on the ionic conductivity of garnets were investigated using X-ray diffraction (XRD), Al-27/Li-6 Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR), Energy Dispersive X-ray Spectroscopy (EDS), Neutron Powder Diffraction (NPD) and Alternating Current (AC) impedance measurements. It was shown that co-dopants Al and Te stabilized the cubic lattice of Li7-2x-3yAlyLa3Zr2-xTexO12 with specific Al/Te ratios, where additional Al had to be included in the structure if the amount of doped Te content x was below 0.5. In the Al and Te co-doped crystal structure, Al was incorporated into the tetrahedral 24d sites of lithium and Te occupied 16a sites of Zr. It was revealed that the occupancy of the latter could suppress the insertion of Al. High-resolution Li-6 MAS NMR was able to differentiate the two lithium sites of interest in the garnet structure. Furthermore, it was shown that the mobility of Li ions at 24d sites mainly determined the bulk conductivities of garnet-type electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available