4.6 Article

Formation of a p-n heterojunction on GaP photocathodes for H-2 production providing an open-circuit voltage of 710 mV

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 19, Pages 6847-6853

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta00752b

Keywords

-

Funding

  1. Nordic Energy Research's project NISFD [52 NISFD]
  2. Danish Ministry of Science's UNIK initiative Catalysis for Sustainable Energy (CASE)
  3. Danish National Research Foundation's Center for Individual Nanoparticle Functionality [DNRF54]

Ask authors/readers for more resources

Photocatalytic water splitting for the sustainable production of hydrogen using a two-photon tandem device requires careful optimization of the semiconductors used as photon absorbers. In this work we show how the open-circuit voltage of photocathodes for the hydrogen evolution reaction based on p-GaP was increased considerably by sputtering of different n-type metal oxides on the surface and thereby forming an effective p-n heterojunction. Both n-TiO2 and n-Nb2O5 increased the V-OC of the photocathodes, with the latter giving an ultimate V-OC of 710 mV using Pt as the cocatalyst. This value is unprecedented for a p-GaP-based HER photocathode operating in an acidic electrolyte under simulated 1 Sun illumination. An additional, but highly significant benefit of a TiO2 layer is that it provides a remarkable operational stability of more than 24 h under constant operation. It was found that TiO2 and Nb2O5 overlayers, which were characterized by high donor density, caused a large built-in potential drop that is located almost exclusively in the p-type substrate. The large built-in potential drop in the GaP effectively separates charge carriers driving photogenerated electrons toward the surface of the electrode to perform the HER. According to this result, a further careful choice of materials having specific properties, such as optimal carrier concentration and band positions, could potentially increase V-OC even more, paving the way for the realization of a non-assisted two-photon solar water splitting device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available