4.6 Article

Iodine-treated heteroatom-doped carbon: conductivity driven electrocatalytic activity

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 42, Pages 18115-18124

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta03706e

Keywords

-

Funding

  1. NRF [NRF-2010-0029245]
  2. Global Frontier R&D Program on Center for Multiscale Energy System - Ministry of Education, Science and Technology [NRF-2011-0031571]

Ask authors/readers for more resources

A high conductivity and surface area are the most highly desired properties of an electrocatalyst. Herein, we report a novel technique to synthesize highly conductive and microporous N and S-doped carbon from polyaniline (PANI) via a simple, template-free hydrothermal method followed by carbonization in the presence of iodine. The iodine treatment removes a large amount of the attached oxygen atoms and other heteroatoms and, as a consequence, increases the carbon content. Thus, the iodine treatment decreases the doping of catalytically active heteroatoms, which is unfavourable for the ORR, but at the same time, significantly increases the electrical conductivity, which is beneficial for the ORR. In particular, iodine-treated carbonized PANI (CPANI) shows an exceptionally high conductivity i.e., about 3 times that of untreated CPANI. Iodine treatment is also found to enhance the micropore surface area of the PANI during carbonization without using a harmful activating agent or a hard template. An electrocatalytic study indicates that the activity of the iodine-treated sample is considerably higher than that of an untreated sample. This remarkable upsurge in activity is mainly attributed to the large increase in the conductivity and surface area of the iodine-treated sample. The ORR activity is discussed in terms of the heteroatom content, surface area and conductivity of the carbon. This convenient, innovative approach can offer new possibilities for the design of future highly efficient fuel cell electrocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available