4.6 Article

Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 1, Issue 14, Pages 4490-4496

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta00004d

Keywords

-

Funding

  1. National Natural Science Foundation of China [21173120]
  2. Natural Science Foundation of Jiangsu Province [BK2011030]
  3. Graduate Innovation Center in NUAA [kfjj120209]

Ask authors/readers for more resources

The wide-scale implementation of lithium-sulfur batteries is limited by their rapid capacity fading, which is induced by the pulverization of the sulfur cathode and dissolution of intermediate polysulfides. Herein, we reported the encapsulation of sulfur (S) into hierarchically porous carbon nanoplates (HPCN) derived from one-step pyrolysis of metal-organic frameworks (MOF-5). HPCN with an average thickness of ca. 50 nm exhibits a three-dimensional (3D) hierarchically porous nanostructure, high specific surface area (1645 m(2) g(-1)) and large pore volume (1.18 cm(3) g(-1)). When evaluated as a cathode for lithium-sulfur batteries, the HPCN-S composite demonstrates high specific capacity and excellent cycling performance. At a current rate of 0.1 C, the initial discharge capacity of HPCN-S is 1177 mA h g(-1). Even at a current rate of 0.5 C, it still delivers a discharge capacity of 730 mA h g(-1) after 50 cycles and the Coulombic efficiency is up to 97%. The enhanced electrochemical performance of HPCN-S is closely related to its well-defined 3D porous plate nanostructure which not only provides stable electronic and ionic transfer channels, but also plays a key role as a strong absorbent to retain polysulfides and accommodate volume variation during the charge-discharge process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available