4.6 Article

Biphasic oxidation promoted by magnetic amphiphilic nanocomposites undergoing a reversible emulsion process

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 1, Issue 35, Pages 10203-10208

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta11535f

Keywords

-

Ask authors/readers for more resources

Magnetic amphiphilic nanocomposites (MANCs) based on nanoalumina and carbon nanostructures were produced and applied as catalysts for biphasic reactions. These amphiphilic composites (MANCs) exhibit an excellent interaction at the interface of systems composed of immiscible liquids and can form stable emulsions between them. Being magnetic, the composites can also be used to break other stable emulsions or make the emulsions formed reversible. In this work, we report the first use of magnetic amphiphilic nanocomposites to promote biphasic reactions undergoing a magnetically reversible emulsion process. Fe and Mo catalysts were supported on the surface of nanoalumina to grow carbon nanostructures by a CVD process. To achieve the amphiphilic property, the carbon coating on the surface of the matrix is only partial. Thus, exposed iron sites can be active to catalysis. For this reason the biphasic selective oxidation of organic contaminants by hydrogen peroxide was studied. Fe species catalyze the decomposition of H2O2 into (OH)-O-center dot very close to the substrate and intensify the biphasic reaction. The oxidized compounds are then extracted by the aqueous phase by polarity. The amphiphilic nanocomposites showed a high activity for the oxidation of model contaminants, reaching 100% of removal. The composites can be recovered by a magnetic field and reused several times with good efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available