4.6 Article

Nanosized MnO2 spines on Au stems for high-performance flexible supercapacitor electrodes

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 1, Issue 42, Pages 13301-13307

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta12911j

Keywords

-

Funding

  1. National Science Council, Aim for the Top University Plan of the National Chiao Tung University
  2. Ministry of Education of Taiwan, the Republic of China

Ask authors/readers for more resources

Electrodes composed of ultrathin MnO2 (thickness 5-80 nm) spines on Au nanowire (NW) stems (length 10-20 mu m, diameter 20-100 nm) were electrochemically grown on flexible polyethylene terephthalate (PET) substrates. The electrodes demonstrated high specific capacitance, high specific energy value, high specific power value, and long-term stability. In Na2SO4(aq.) (1 M), the maximum specific capacitance was determined to be 1130 F g(-1) by cyclic voltammetry (CV, scan rate 2 mV s(-1)) using a three-electrode system. From a galvanostatic (GV) charge/discharge test using a two-electrode system, a maximum capacitance of 225 F g(-1) (current density 1 A g(-1)) was measured. Even at a high charge/discharge rate of 50 A g(-1), the specific capacitance remained at an extremely high value of 165 F g(-1). The flexible electrodes also exhibited a maximum specific energy of 15 W h kg(-1) and a specific power of 20 kW kg(-1) at 50 A g(-1). After five thousand cycles at 10 A g(-1), 90% of the original capacitance was retained. A highly flexible solid-state device was also fabricated to reveal its supercapacitance performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available