4.6 Article

Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 1, Issue 5, Pages 1579-1586

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ta00521b

Keywords

-

Ask authors/readers for more resources

LiFePO4 has attracted much attention as a potential cathode material for advanced lithium-ion batteries due to its superior thermal stability. In spite of this, LiFePO4 still suffers from fast capacity fading at high temperature and/or moisture-contaminated electrolyte. The influence of moisture and the detailed corrosion mechanism is still not clear. Here, for the first time, we present a direct visual observation of the surface corrosion process at olivine LiFePO4 stored in moisture-contaminated electrolyte, and found the direct relationship between iron dissolution and LiFePO4 corrosion. By using the LiFePO4 ingot sample with a flat surface as model materials, iron dissolution and surface chemistry change can be clearly observed and identified by field-emission scanning electron microscopy (SEM), time-of-flightsecondary ion mass spectroscopy (TOF-SIMS), and X-ray absorption near-edge structure (XANES). These iron dissolutions at some corrosion sites evoked the overall LiFePO4 surface corrosion. A significant improvement of the surface stability of LiFePO4 was obtained by nano-carbon coating, and the carbon surface layer protects LiFePO4 from direct contact with corrosive medium, effectively restraining the surface corrosion and preserving the initial surface chemistry of LiFePO4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available