4.5 Article

Quiescent thermal emission from neutron stars in low-mass X-ray binaries

Journal

ASTRONOMY & ASTROPHYSICS
Volume 577, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201322690

Keywords

stars: neutron; binaries: general; X-rays: binaries; dense matter

Ask authors/readers for more resources

Context. We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in X-rays (outbursts). Aims. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. Methods. We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, XTE J1701-462, EXO 0748-676 and IGRJ17480-2446. Results. We find that the evolution of MXB 1659-29, KS 1731-260 and EXO0748-676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701-462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGRJ17480-2446 with an additional heat deposition in the outer crust from shallow sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available