4.4 Article

Covariant description of flavor conversion in the LHC era

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 10, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP10(2010)046

Keywords

Beyond Standard Model; Rare Decays; CP violation

Funding

  1. Israel Science Foundation [1087/09]
  2. EU
  3. IRG fellowship
  4. Peter & Patricia Gruber Award

Ask authors/readers for more resources

A simple covariant formalism to describe flavor and CP violation in the left-handed quark sector in a model independent way is provided. The introduction of a covariant basis, which makes the standard model approximate symmetry structure manifest, leads to a physical and transparent picture of flavor conversion processes. Our method is particularly useful to derive robust bounds on models with arbitrary mechanisms of alignment. Known constraints on flavor violation in the K and D systems are reproduced in a straightforward manner. Assumptions-free limits, based on top flavor violation at the LHC, are then obtained. In the absence of signal, with 100 fb(-1) of data, the LHC will exclude weakly coupled (strongly coupled) new physics up to a scale of 0.6 TeV (7.6 TeV), while at present no general constraint can be set related to Delta t - 1 processes. LHC data will constrain Delta F = 2 contributions via same-sign tops signal, with a model independent exclusion region of 0.08 TeV (1.0 TeV). However, in this case, stronger bounds are found from the study of CP violation in D - (D) over bar mixing with a scale of 0.57 TeV (7.2 TeV). In addition, we apply our analysis to models of supersymmetry and warped extra dimension. The minimal flavor violation framework is also discussed, where the formalism allows to distinguish between the linear and generic non-linear limits within this class of models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available