4.5 Article

Variability-selected active galactic nuclei in the VST-SUDARE/VOICE survey of the COSMOS field

Journal

ASTRONOMY & ASTROPHYSICS
Volume 574, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201424906

Keywords

galaxies: active; X-rays: galaxies; quasars: general; supernovae: general; surveys

Funding

  1. PRIN-INAF Galaxy Evolution with the VLT Surveys Telescope (VST)
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. US Department of Energy Office of Science
  5. University of Arizona
  6. Brazilian Participation Group
  7. Brookhaven National Laboratory
  8. University of Cambridge
  9. Carnegie Mellon University
  10. University of Florida
  11. French Participation Group
  12. German Participation Group
  13. Harvard University
  14. Instituto de Astrofisica de Canarias
  15. Michigan State/Notre Dame/JINA Participation Group
  16. Johns Hopkins University
  17. Lawrence Berkeley National Laboratory
  18. Max Planck Institute for Astrophysics
  19. Max Planck Institute for Extraterrestrial Physics
  20. New Mexico State University
  21. New York University
  22. Ohio State University
  23. Pennsylvania State University
  24. University of Portsmouth
  25. Princeton University
  26. Spanish Participation Group
  27. University of Tokyo
  28. University of Utah
  29. Vanderbilt University
  30. University of Virginia
  31. University of Washington
  32. Yale University
  33. Millennium Institute of Astrophysics of the Programa Iniciativa Cientifica Milenio del Ministerio de Economia, Foment y Turisaio de Chile [ICI20009]
  34. Square Kilometre Array South Africa project
  35. South African National Research Foundation

Ask authors/readers for more resources

Context. Active galaxies are characterized by variability at every wavelength, with timescales from hours to years depending on the observing window. Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. Aims. In the present work we test the use of optical variability as a tool to identify active galactic nuclei in the VST multiepoch survey of the COSMOS field, originally tailored to detect supernova events. Methods. We make use of the multiwavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. Results. The selection on the basis of optical variability returns a sample of 83 AGN candidates; based on a number of diagnostics. we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude (completeness ranging from 26% to 5%). In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger rms variability than the bulk of non variable sources. indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. The low completeness is in part due to the short observing span: we show that increasing the temporal baseline results in larger samples as expected for sources with a red-noise power spectrum. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide field surveys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available