4.4 Article

Exact differential and corrected area law for stationary black holes in tunneling method

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 5, Pages -

Publisher

SPRINGER
DOI: 10.1088/1126-6708/2009/05/063

Keywords

Black Holes; Classical Theories of Gravity

Ask authors/readers for more resources

We give a new and conceptually simple approach to obtain the first law of black hole thermodynamics from a basic thermodynamical property that entropy (S) for any stationary black hole is a state function implying that dS must be an exact differential. Using this property we obtain some conditions which are analogous to Maxwell's relations in ordinary thermodynamics. From these conditions we are able to explicitly calculate the semiclassical Bekenstein-Hawking entropy, considering the most general metric represented by the Kerr-Newman spacetime. We extend our method to find the corrected entropy of stationary black holes in (3+1) dimensions. For that we first calculate the corrected Hawking temperature considering both scalar particle and fermion tunneling beyond the semiclassical approximation. Using this corrected Hawking temperature we compute the corrected entropy, based on properties of exact differentials. The connection of the coefficient of the leading (logarithmic) correction with the trace anomaly of the stress tensor is established. We explicitly calculate this coefficient for stationary black holes with various metrics, emphasising the role of Komar integrals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available