4.4 Article

Thermodynamics of a black hole based on a generalized uncertainty principle

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1088/1126-6708/2008/01/035

Keywords

black holes; models of quantum gravity

Ask authors/readers for more resources

We study thermodynamic quantities and the stability of a black hole in a cavity using the Euclidean action formalism by Gibbons and Hawking based on the generalized uncertainty relation which is extended in a symmetric way with respect to the space and momentum without loss of generality. Two parameters in the uncertainty relation affect the thermodynamical quantities such as energy, entropy, and the heat capacity. In particular, it can be shown that the small black hole is unstable and it may decay either into a minimal black hole or a large black hole. We discuss a constraint for a large black hole comparable to the size of the cavity in connection with the critical mass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available