4.6 Article

Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation

Journal

JOURNAL OF ENERGY CHEMISTRY
Volume 23, Issue 1, Pages 35-42

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S2095-4956(14)60115-7

Keywords

promoter cobalt; molybdenum; impregnation sequence; sulfur-resistant methanation; synthetic natural gas

Ask authors/readers for more resources

The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method and characterized by N-2-adsorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and laser Raman spectroscopy (LRS). The conversions of CO for Mo-Co/Al, Co-Mo/Al and CoMo/Al catalysts were 59.7%, 54.3% and 53.9%, respectively. Among these catalysts, the Mo-Co/Al catalyst prepared stepwisely by impregnating Mo precursor firstly showed the best catalytic performance. Meanwhile, the conversions of CO were 48.9% for Mo/Al catalyst and 10.5% for Co/Al catalyst. The addition of cobalt species could improve the catalytic activity of Mo/Al catalyst. The N-2-adsorption results showed that Co-Mo/Al catalyst had the smallest specific surface area among these catalysts. CoMoO4 species in CoMo/Al catalyst were detected with XRD, TPR and LRS. Moreover, crystal MoS2 which was reported to be less active than amorphous MoS2 was found in both Co-Mo/Al and CoMo/Al catalysts. Mo-Co/Al catalyst showed the best catalytic performance as it had an appropriate surface structure, i.e., no crystal MoS2 and very little CoMoO4 species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available