4.5 Article

VLT/MUSE view of the highly ionized outflow cones in the nearby starburst ESO338-IG04

Journal

ASTRONOMY & ASTROPHYSICS
Volume 576, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201525850

Keywords

galaxies: starburst; galaxies: individual: ESO338-IG04; galaxies: kinematics and dynamics

Funding

  1. Swedish research council (VR)
  2. Swedish National Space Board (SNSB)

Ask authors/readers for more resources

Context. The Lya line is an important diagnostic for star formation at high redshift, but interpreting its flux and line profile is difficult because of the resonance nature of Lya. Trends between the escape of Lya photons and dust and properties of the interstellar medium (ISM) have been found, but detailed comparisons between Lya emission and the properties of the gas in local high-redshift analogs are vital for understanding the relation between Lya emission and galaxy properties. Aims. For the first time, we can directly infer the properties of the ionized gas at the same location and similar spatial scales of the extended Lya halo around the local Lya emitter and Lyman-break galaxy analog ESO338-IG04. Methods. We obtained VLT/MUSE integral field spectra. We used ionization parameter mapping of the [S II]/[O III] line ratio and the kinematics of Ha to study the ionization state and kinematics of the ISM of ESO 338-IG04. Results. The velocity map reveals two outflows, one toward the north, the other toward the south of ESO338. The ionization parameter mapping shows that the entire central area of the galaxy is highly ionized by photons leaking from the HII regions around the youngest star clusters. Three highly ionized cones have been identified, of which one is associated with an outflow detected in the Ha. We propose a scenario where the outflows are created by mechanical feedback of the older clusters, while the highly ionized gas is caused by the hard ionizing photons emitted by the youngest clusters. A comparison with the Lya map shows that the (approximately bipolar) asymmetries observed in the Lya emission are consistent with the base of the outflows detected in Ha. No clear correlation with the ionization cones is found. Conclusions. The mechanical and ionization feedback of star clusters significantly changes the state of the ISM by creating ionized cones and outflows. The comparison with Lya suggests that especially the outflows could facilitate the escape of Lya photons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available