4.7 Article

Real-Time Implementation of Intelligent Reconfiguration Algorithm for Microgrid

Journal

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
Volume 5, Issue 2, Pages 598-607

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSTE.2013.2289864

Keywords

Genetic algorithm (GA); graph theory; microgrid; real-time simulation; reconfiguration; restoration

Funding

  1. Schweitzer Engineering Lab
  2. RTDS

Ask authors/readers for more resources

Microgrids with renewable distributed generation and energy storage offer sustainable energy solutions. To maintain the availability of energy to the connected loads, considering priority and to interrupt the smallest portion of the microgrid under any abnormal conditions, reconfiguration is critical to restore service to a section or to meet some operational requirements of dropping minimum loads. Reconfiguration is the process of modifying the microgrid's topological structure by changing the status (open/close) of the circuit breakers or switches. In this work, constraints are the power balance equation and power generation limits, and we assumed that the system is designed with the entire planning and operational control criterion to meet the voltage violation and line overloading constraints. This paper offers novel real-time implementation of intelligent algorithm for microgrid reconfiguration. Intelligent algorithm is based on the genetic algorithms and has been tested on two test systems including shipboard power system and modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid. Real-time test bed utilizes real-time digital simulator and commercial real-time controllers from Schweitzer Engineering Lab. Reconfiguration algorithm has been implemented in the real time using real-time test bed, e.g., microgrid system, and satisfactory results were obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available