4.7 Article

Optimal Sizing of PEV Fast Charging Stations With Markovian Demand Characterization

Journal

IEEE TRANSACTIONS ON SMART GRID
Volume 10, Issue 4, Pages 4457-4466

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2018.2860783

Keywords

Plug in electric vehicle (PEV); state of charge (SoC); Monte Carlo simulation; Markov model; queuing theory; charging station planning

Funding

  1. National Key Research and Development Program of China [2017YFB1400601]
  2. National Natural Science Foundation of China [51777183, 61772461]
  3. Key Research and Development Project of Zhejiang Province [2015C01027]
  4. Natural Science Foundation of Zhejiang Province [LZ15E070001, LR18F020003]
  5. Deanship of Scientific Research at King Abdulaziz University, Jeddah [G-415-135-38]
  6. Jiangsu Province [BK20161142]
  7. Macao FDCT [056/2017/A2]

Ask authors/readers for more resources

Fast charging stations are critical infrastructures to enable high penetration of plug-in electric vehicles (PEVs) into future distribution networks. They need to be carefully planned to meet charging demand as well as ensure economic benefits. Accurate estimation of PEV charging demand is the prerequisite of such planning, but a nontrivial task. This paper addresses the sizing (number of chargers and waiting spaces) problem of fast charging stations and presents an optimal planning solution based on an explicit temporal-state of charge characterization of PEV fast charging demand. The characteristics of PEV charging demand are derived through a vehicle travel behavior analysis using available statistics. The PEV dynamics in charging stations is modelled with a Markov chain and queuing theory. As a result, the optimal number of chargers and waiting spaces in fast charging stations can be jointly determined to maximize expected operator profits, considering profit of charging service, penalty of waiting and rejection, as well as maintenance cost of idle facilities. The proposed solution is validated through a case study with mathematical justifications and simulation results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available