4.7 Article

Coordinated Charging of Plug-In Hybrid Electric Vehicles to Minimize Distribution System Losses

Journal

IEEE TRANSACTIONS ON SMART GRID
Volume 2, Issue 1, Pages 198-205

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2010.2090913

Keywords

Distribution systems; load factor; load management; load variance; losses minimization; plug-in hybrid vehicle (PHEV); smart charging

Ask authors/readers for more resources

As the number of plug-in hybrid vehicles (PHEVs) increases, so might the impacts on the power system performance, such as overloading, reduced efficiency, power quality, and voltage regulation particularly at the distribution level. Coordinated charging of PHEVs is a possible solution to these problems. In this work, the relationship between feeder losses, load factor, and load variance is explored in the context of coordinated PHEV charging. From these relationships, three optimal charging algorithms are developed which minimize the impacts of PHEV charging on the connected distribution system. The application of the algorithms to two test systems verifies these relationships approximately hold independent of system topology. They also show the additional benefits of reduced computation time and problem convexity when using load factor or load variance as the objective function rather than system losses. This is important for real-time dispatching of PHEVs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available