4.4 Article

Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes

Journal

GENOME BIOLOGY
Volume 15, Issue 2, Pages -

Publisher

BMC
DOI: 10.1186/gb-2014-15-2-r36

Keywords

-

Funding

  1. NIH [1P01HL098053, 5P01HD32573]
  2. [NSF-CCF-1115206]
  3. [NSF-IIS-1318386]
  4. [5RO1-HG004962]
  5. [U54 HL108460]
  6. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH &HUMAN DEVELOPMENT [P01HD032573] Funding Source: NIH RePORTER
  7. NATIONAL CANCER INSTITUTE [P30CA023100] Funding Source: NIH RePORTER
  8. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [U54HL108460, P01HL098053] Funding Source: NIH RePORTER
  9. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [R01HG004962] Funding Source: NIH RePORTER
  10. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [K23DK100533] Funding Source: NIH RePORTER
  11. Direct For Computer & Info Scie & Enginr [1318386] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: Although it has long been proposed that genetic factors contribute to adaptation to high altitude, such factors remain largely unverified. Recent advances in high-throughput sequencing have made it feasible to analyze genome-wide patterns of genetic variation in human populations. Since traditionally such studies surveyed only a small fraction of the genome, interpretation of the results was limited. Results: We report here the results of the first whole genome resequencing-based analysis identifying genes that likely modulate high altitude adaptation in native Ethiopians residing at 3,500 m above sea level on Bale Plateau or Chennek field in Ethiopia. Using cross-population tests of selection, we identify regions with a significant loss of diversity, indicative of a selective sweep. We focus on a 208 kbp gene-rich region on chromosome 19, which is significant in both of the Ethiopian subpopulations sampled. This region contains eight protein-coding genes and spans 135 SNPs. To elucidate its potential role in hypoxia tolerance, we experimentally tested whether individual genes from the region affect hypoxia tolerance in Drosophila. Three genes significantly impact survival rates in low oxygen: cic, an ortholog of human CIC, Hsl, an ortholog of human LIPE, and Paf-AHa, an ortholog of human PAFAH1B3. Conclusions: Our study reveals evolutionarily conserved genes that modulate hypoxia tolerance. In addition, we show that many of our results would likely be unattainable using data from exome sequencing or microarray studies. This highlights the importance of whole genome sequencing for investigating adaptation by natural selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available