4.4 Article

Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs

Journal

GENOME BIOLOGY
Volume 13, Issue 11, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/gb-2012-13-11-r102

Keywords

-

Funding

  1. John Fells OUP Research Fund Award
  2. Marie Curie Intra-European Career Development Award
  3. Medical Research Council
  4. European Research Council Advanced Grant
  5. Oxion initiative
  6. Wellcome Trust
  7. Clarendon Fund
  8. Natural Sciences Engineering Research Council of Canada
  9. MRC [MC_U137761446] Funding Source: UKRI
  10. Medical Research Council [MC_U137761446] Funding Source: researchfish

Ask authors/readers for more resources

Background: Recent reports have highlighted instances of mRNAs that, in addition to coding for protein, regulate the abundance of related transcripts by altering microRNA availability. These two mRNA roles - one mediated by RNA and the other by protein - are inter-dependent and hence cannot easily be separated. Whether the RNA-mediated role of transcripts is important, per se, or whether it is a relatively innocuous consequence of competition by different transcripts for microRNA binding remains unknown. Results: Here we took advantage of 48 loci that encoded proteins in the earliest eutherian ancestor, but whose protein-coding capability has since been lost specifically during rodent evolution. Sixty-five percent of such loci, which we term 'unitary pseudogenes', have retained their expression in mouse and their transcripts exhibit conserved tissue expression profiles. The maintenance of these unitary pseudogenes' spatial expression profiles is associated with conservation of their microRNA response elements and these appear to preserve the post-transcriptional roles of their protein-coding ancestor. We used mouse Pbcas4, an exemplar of these transcribed unitary pseudogenes, to experimentally test our genome-wide predictions. We demonstrate that the role of Pbcas4 as a competitive endogenous RNA has been conserved and has outlived its ancestral gene's loss of protein-coding potential. Conclusions: These results show that post-transcriptional regulation by bifunctional mRNAs can persist over long evolutionary time periods even after their protein coding ability has been lost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available