4.6 Review

Biochemical aspects of bacterial strategies for handling the incomplete translation processes

Journal

FRONTIERS IN MICROBIOLOGY
Volume 5, Issue -, Pages -

Publisher

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fmicb.2014.00170

Keywords

tmRNA; SmpB; ArfA; RF2; ArfB; trans-translation; ribosome rescue; quality control

Categories

Funding

  1. Quantitative Biology Center - RIKEN
  2. Grants-in-Aid for Scientific Research [26710014, 26640134] Funding Source: KAKEN

Ask authors/readers for more resources

During protein synthesis in cells, translating ribosomes may encounter abnormal situations that lead to retention of immature peptidyl-tRNA on the ribosome due to failure of suitable termination processes. Bacterial cells handle such situations by employing three systems that rescue the stalled translation machinery. The transfer messenger RNA/small protein B (tmRNA/SmpB) system, also called the trans-translation system, rescues stalled ribosomes by initiating template switching from the incomplete mRNA to the short open reading frame of tmRNA, leading to the production of a protein containing a C-terminal tag that renders it susceptible to proteolysis. The ArfA/RF2 and ArfB systems rescue stalled ribosomes directly by hydrolyzing the immature peptidyl-tRNA remaining on the ribosome. Here, the biochemical aspects of these systems, as clarified by recent studies, are reviewed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available