4.2 Article

Single (1:1) vs. double (1:2) metronomes for the spontaneous entrainment and stabilisation of human rhythmic movements

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 236, Issue 12, Pages 3341-3350

Publisher

SPRINGER
DOI: 10.1007/s00221-018-5382-4

Keywords

Entrainment; Synchronisation; Movement; Variability; Metronome

Categories

Funding

  1. Australian Research Council Discovery project [DP170104322]
  2. Australian Research Council [FT140101162]

Ask authors/readers for more resources

Rhythmic movements produced by humans become spontaneously entrained to auditory rhythms in the environment. Evidence suggests that synchronisation to external auditory rhythms can contribute to the stabilisation of movements in time and space, opening new perspectives for motor training and rehabilitation. Here we compared the effects of single (1:1) and double (1:2) metronomes (i.e., one or two stimulations per preferred movement cycle) on spontaneous movement entrainment and stabilisation. We examined the spontaneous entrainment of self-paced hand-held pendulum swinging when single or double metronomes were presented either at the participant's preferred tempo or slightly slower or faster (+/- 10%). The results showed that participants' movements spontaneously entrained to auditory rhythms, and that the strength of this entrainment was the same for single and double metronomes. However, double metronomes decreased movement tempo stability, whereas single metronomes increased movement tempo stability compared to a control condition without a stimulus. These effects preferentially occurred for metronomes presented at participants' preferred movement tempi and especially for participants whose movements were intrinsically more variable. Participants' movement amplitude stability was also modulated in such a way that the stability of participants who were intrinsically less stable increased, whereas the stability of intrinsically more stable participants decreased with auditory rhythms, an effect that was stronger with double than single metronomes. Moreover, movement stabilisation in time and space were positively correlated, suggesting that tempo and amplitude stabilisation depend on similar processes and may be complementary. These findings provide new insight into the processes underlying auditory-motor entrainment and how auditory rhythms can be used to improve movement stability in time and space.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available