4.2 Article

The influence of a single bout of aerobic exercise on short-interval intracortical excitability

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 232, Issue 6, Pages 1875-1882

Publisher

SPRINGER
DOI: 10.1007/s00221-014-3879-z

Keywords

Motor cortex; Short-interval intracortical inhibition; GABA(A); Transcranial magnetic stimulation; Physical activity

Categories

Funding

  1. National Health and Medical Research Council (NHMRC) of Australia

Ask authors/readers for more resources

Regular physical activity can have positive effects on brain function and plasticity. Indeed, there is some limited evidence that even a single bout of exercise may promote plasticity within the cortex. However, the mechanisms by which exercise acutely promotes plasticity are not clear. To further explore the effects of acute exercise on cortical function, we examined whether a single bout of exercise was associated with changes in cortical excitability and inhibition. Using standard techniques, cortical stimulus-response curves [90 % resting motor threshold (RMT)-150 % RMT] were investigated in nine subjects (four females, 31.1 +/- A 11.7 years) and short-interval intracortical inhibition (SICI) [interstimulus interval 2 ms and 3 ms, conditioning intensities of 80 % active motor threshold (AMT) and 90 % AMT] in 13 subjects (six females, 28.4 +/- A 5.1 years) before and at 0 and 15 min following 30 min of ergometer cycling at low-moderate or moderate-high intensity. There were no changes in cortical excitability following exercise but less SICI at both 0 and 15 min post-exercise (F ([2, 24]) = 7.7, P = 0.003). These findings show that a short period of exercise can transiently reduce SICI. Such a change in inhibition after exercise may contribute to the development of a cortical environment that would be more optimal for plasticity and may partially explain previous findings of enhanced neuroplasticity following low-intensity exercise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available