4.5 Article

Physiology and pathophysiology of IGFBP-1 and IGFBP-2-Consensus and dissent on metabolic control and malignant potential

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.beem.2015.07.002

Keywords

IGFBP-1; IGFBP-2; metabolism; diabetes; obesity; cancer; AKT; PTEN; steroids

Funding

  1. National Health and Medical Research Council (NHMRC) of Australia [1008062]
  2. Murdoch Childrens Research Institute
  3. Royal Children's Hospital Foundation
  4. Deutsche Forschungsgemeinschaft (DFG) [HO2003/6-1]

Ask authors/readers for more resources

IGFBP-1 and IGFBP-2 are suppressed by growth hormone and therefore represent less prominent members of the IGFBP family when compared to IGFBP-3 that carries most of the IGFs during circulation under normal conditions in humans in vivo. As soon as the GH signal is decreased expression of IGF-I and IGFBP-3 is reduced. Under conditions of lowered suppression by GH the time seems come for IGFBP-1 and IGFBP-2. Both IGFBPs are potent effectors of growth and metabolism. Secretion of IGFBP-1 and IGFBP-2 is further suppressed by insulin and diminished with increasing obesity. Both IGFBP family members share the RGD sequence motif that mediates binding to integrins and is linked to PTEN/PI3K signalling. In mice, IGFBP-2 prevents age- and diet-dependent glucose insensitivity and blocks differentiation of preadipocytes. The latter function is modulated by two distinct heparin-binding domains of IGFBP-2 which are lacking in IGFBP-1. IGFBP-2 is further regulated by leptin and has been demonstrated to affect insulin sensitivity and glucose tolerance, further supporting a particular role of IGFBP-2 in glucose and fat metabolism. Since IGFBP-2 is controlled by sex steroids as well, we devised a scheme to compare IGFBP effects in breast, ovarian and prostate cancer. While a positive association does not seem to exist with IGFBP-1 and risk of cancers within these reproductive tissues, a relationship between IGFBP-2 and breast cancer, ovarian cancer and prostate cancer does indeed appear to be present. To date, the specific roles of IGFBP-2 in estrogen signalling are unclear, though there is accumulating evidence for an effect of IGFBP-2 on PI3K signalling via PTEN, particularly in breast cancer. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available