4.2 Article

Low-frequency sinusoidal galvanic stimulation of the left and right vestibular nerves reveals two peaks of modulation in muscle sympathetic nerve activity

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 213, Issue 4, Pages 507-514

Publisher

SPRINGER
DOI: 10.1007/s00221-011-2800-2

Keywords

Vestibular; Sympathetic; Blood pressure; Vestibulosympathetic reflexes; Human; Microneurography; MSNA

Categories

Ask authors/readers for more resources

Studies previously performed in our laboratory have shown that sinusoidal galvanic vestibular stimulation (sGVS), a means of selectively modulating vestibular input without affecting other inputs, can cause partial entrainment of muscle sympathetic nerve activity (MSNA) at frequencies ranging from 0.2 to 2.0 Hz. Here we test the effect of sGVS on sympathetic outflow when stimulating the vestibular system at lower frequencies. MSNA was recorded via tungsten microelectrodes inserted into the left common peroneal nerve in 12 awake, seated subjects. Bipolar binaural sinusoidal GVS (+/- 2 mA, 100 cycles) was applied to the mastoid processes at 0.08, 0.13 and 0.18 Hz. Cross-correlation analysis revealed two bursts of modulation of MSNA for each cycle of stimulation. We believe the primary peak is related to the positive phase of the sinusoid, in which the right vestibular nerve is hyperpolarised and the left vestibular nerve depolarised. Furthermore, we believe the secondary peak is related to the negative phase of the sinusoid (depolarisation of the right vestibular nerve and hyperpolarisation of the left vestibular nerve). This was never observed at higher frequencies of stimulation, presumably because at such frequencies there is insufficient time for a second peak to be expressed. The incidence of double peaks of MSNA was highest at 0.08 Hz and lowest at 0.18 Hz. These observations emphasise the role of the vestibular apparatus in the control of blood pressure, and further suggest convergence of bilateral inputs from vestibular nuclei onto the output nuclei from which MSNA originates, the rostral ventrolateral medulla (RVLM).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available