4.4 Article

Magnetic Graphene Nanoplatelet Composites toward Arsenic Removal

Journal

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.010201jss

Keywords

-

Funding

  1. Research Enhanced grant of Lamar University
  2. National Science Foundation - Chemical and Biological Separations [CBET 11-37441]
  3. NSF [DMR 10-05764]

Ask authors/readers for more resources

Magnetic graphene nanoplatelet composites (MGNCs) decorated with core-shell Fe-Fe2O3 nanoparticles (NPs) have been synthesized using a facile one-pot thermal decomposition method. The graphene nanoplatelets (GNPs) decorated with uniformly dispersed NPs are observed to exhibit a strong magnetization and can be magnetically separated from the liquid mixture by a permanent magnet. These MGNCs demonstrate an effective and efficient adsorption of arsenic(III) in the polluted water due to the increased adsorption sites in the presence of magnetic NPs. The adsorption behavior is well fitted with both Langmuir and Freundlich models, which show a significantly higher adsorption capacity (11.34 mg/g) than the other adsorption values reported on the conventional iron oxide based adsorbents (similar to 1 mg/g). The results show a nearly complete As(III) removal within 1 ppb. (C) 2012 The Electrochemical Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available